Приоритет - скорость
Я впервые попал на УЭХК в 1959 году. Я тогда проходил практику от физтеха УПИ как раз на газодиффузионном производстве — застал диффузию на УЭХК еще до появления полноценного центрифужного производства. Газодиффузионное обогащение — это постоянный шум от огромных компрессоров, которые гонят газ, и температура в цехе 30-35° С. А на современных газодиффузионных производствах температура зашкаливает за 80° С, и персонал работает только в защитных костюмах.
Постановление правительства СССР о начале разработки газовых центрифуг для промышленного использования датировано 8 июля 1952 года. Создать центрифужную технологию действительно было тяжело. В газовой диффузии главное — научиться делать пористые разделительные мембраны (ширина ячейки — с молекулу). Если научился, то конструкция у них несложная, и штамповать их можно быстро. А компрессоры для нагнетания газа уже давно умели делать. Разве что нужно было побольше и понадежнее, но это уже детали. К тому же, ремонт компрессора куда проще и понятнее, чем остановка каскада центрифуг. А центрифуга — сложное устройство, она крутится со скоростью более тысячи оборотов в секунду; по техническому заданию на первый завод срок эксплуатации машины составлял 10 лет, сейчас — 30 лет. При этом важна надежность; начиная с машин шестого поколения — выход из строя с вероятностью менее 0,1% в год. Это очень непростая техническая задача.
Перед российскими разработчиками центрифуг с самого начала стояла задача по повышению разделительной способности машин за счёт наращивания скорости. А для такой скорости нужны соответствующие материалы. Первые машины были металлическими, из сплава алюминия 1960. В машинах девятого поколения ротор — это уже сложный композиционный материал, состоящий из того же сплава 1960, нескольких дополнительных компонентов и защитной оболочки. Такая конструкция позволила раза в два увеличить линейные скорости. Изменился и срок службы центрифуг. На первые установки производители давали гарантию три года, а при строительстве заводов проектировщики закладывали период эксплуатации 10 лет. Но по мере отработки режима, изучения свойств центрифуг, по мере совершенствования отдельных узлов их жизненный цикл был доведён до 30 лет. То есть 30 лет машина беспрерывно крутится со скоростью больше тысячи оборотов в секунду на иголочке.
Правда, что все центрифуги вышли из разработки немецких учёных? Это давняя «интернациональная» история. В Советском Союзе где-то в 1936 году центрифугами занимался профессор Ланге — австрийский немец, бежавший из Германии от Гитлера и работавший в Харьковском институте. Потом, когда закончилась война и США испытали ядерное оружие, нашим учёным была поставлена задача создать атомную бомбу. Они, как и участники Манхэттенского проекта, рассматривали различные принципы обогащения урана и соответствующие устройства, вплоть до самого очевидного — калютрона. Это такой спектрометр. Поскольку массы у изотопов урана разные, в магнитном электрическом поле они по разным орбитам расходятся. Но там производительность очень низкая. Обсуждалась, например, и термодиффузионная технология. Американцы в итоге сделали ставку на газовую диффузию. И в СССР большие успехи в 1946 году были достигнуты на том же пути.
Но надо иметь в виду, что после 1945 года все страны-победительницы новейшие научно-технические разработки фашистской Германии старались забрать себе, причём не только документацию и установки, но и специалистов. В Союз приехало много немецких учёных. Группа во главе со Штейнбеком, в которую входили, в том числе, Циппе и Шифер, в сухумском Физико-техническом институте занималась центрифугой. Была изготовлена надкритическая центрифуга 5 см в диаметре, соединённая сильфонами — длинная такая колбаса. И они её раскрутили, посадили на иглу, приладили сверху магнит, чтобы не очень сильно давило на опору, поставили молекулярный насос, чтобы уменьшить трение. Наши конструкторы позже посмотрели эти центрифуги и сошлись во мнении, что для увеличения производительности нет смысла гнаться за длиной, скорость приоритетнее. Но к тому времени, когда появилось постановление о старте серийного производства, немцев — того же Штейнбека и Циппе, переведённых сначала из Сухуми на работу в ОКБ Кировского завода, уже убрали и оттуда. Их отправили на Украину, а в 1956 году вовсе отпустили из СССР. Штейнбек потом стал президентом Академии наук ГДР, Циппе поехал в Западную Германию. Он вообще умный мужик был и быстренько запатентовал подкритическую машину. Долго ездил в Америку, демонстрировал там её, хотел пробить внедрение. Но успеха достиг только к 1970-м годам, когда был сформирован концерн Urenco (Англия, Голландия, Германия). Так что у них первый обогатительный завод открылся чуть ли не на 15 лет позже, чем у нас. Наше счастье, что Циппе уехал раньше.
В 1960 году первый газоцентрифужный хвост на УЭХК только-только запустили. Агрегаты тоже стояли в один ярус. Потом уже разобрались с устойчивостью газового ротора, поняли, как он реагирует на сейсмические воздействия, и проектанты предложили промышленный завод сделать уже на трёхъярусных колоннах. Через какое-то время колонны снова «подросли», и это позволило значительно повысить производительность с площади. Циппе нашу короткую машину видел, но на тот момент разработчики ещё очень боялись сейсмических воздействий. Были опасения, что если произойдёт даже незначительное колебание, может случиться задевание ротором неподвижной детали. И тогда, из-за скорости вращения центрифуги, разнесёт всё вокруг. Поэтому большинство специалистов отказывались от идеи располагать машины ярусами. И в Urenco начали думать над тем, как увеличить производительность, но пошли по другому пути. Решили сделать машину длиннее, и после подкритических центрифуг переключились на надкритические.
В чём между ними разница? У подкритической центрифуги рабочая частота вращения ниже, чем первая критическая резонансная частота. А надкритическая машина работает уже за этой частотой. Чтобы её вывести на рабочую мощность, надо пройти критическую скорость, после которой она будет устойчиво работать. Это сложная задача, конечно. Но станкостроительная промышленность в Европе была на существенно более высоком уровне, особенно в Германии. Наше преимущество состоит в умении делать подкритические машины большими тиражами. Если машины длиннее, значит, обогатительным заводам их нужно меньше. Так что производство Urenco можно условно отнести к мелкосерийному. Последняя модификация их центрифуг имеет высоту примерно 7 м, наша — метр, а американцы делают сейчас даже по 12 м. Но если посчитать разделительную мощность на квадратный или кубический метр, то российские показатели лучше.
Кто сегодня обладает центрифужной технологией обогащения урана? Во-первых, это наши четыре завода: УЭХК в Новоуральске (это крупнейшее в мире разделительное предприятие), Ангарский электролизный химический комбинат в Иркутской области, Сибирский химический комбинат в Северске Томской области и ПО «Электрохимический завод» в Зеленогорске Красноярского края. Во-вторых, центрифужная технология есть у нашего основного конкурента на мировом рынке топливного урана — англо-немецко-голландского консорциума Urenco. У них три собственных завода в Европе: в Капенхерсте в Англии, в Альмело в Нидерландах и в Гронау в Германии.
В 1990-х годах собственную центрифугу пытались сделать японцы. И поначалу им это удавалось, но потом они зашли в какой-то непреодолимый технологический тупик: они довели мощность своего завода до 1 млн ЕРР, а потом были вынуждены его остановить насовсем. Позже они пытались заключить соглашение с Urenco, но не вышло. Скорее всего, дело в потенциальной сейсмической опасности: Urenco производит высокие надкритические машины, очень чувствительные к малейшим колебаниям. Затем японцы хотели обратиться к нам, но тогдашний министр по атомной энергии Александр Румянцев запретил нам вести с ними переговоры о возможности совместного создания центрифуг.
В 2011 году французская Areva запустила первую очередь нового центрифужного завода Georges Besse II. Но технология у французов все та же: в 2006 году Areva приобрела у Urenco 50% акций предприятия Enrichment Technology Company по производству центрифуг. По сути, так Areva обеспечила себе доступ к центрифугам Urenco. В 2011 году наш «Техснабэкспорт» ввел в строй четвертую (последнюю) очередь газоцентрифужного завода в Ханжунге в Китае — мы его возводили в рамках «оказания технического содействия КНР» по межправительственному соглашению 1992 года. Суммарная мощность разделительных предприятий, построенных Россией, небольшая — 1,5 млн ЕРР в год. Но в 2010 году китайцы заявили, что они сделали свою центрифугу, и в 2013 году даже запустили собственный промышленный каскад. Однако никакой конкретики китайцы не открывают, так что оценивать «самостоятельность» разработки я не возьмусь. Известно, что небольшие центрифужные установки имеются в Иране, Индии, Пакистане и северной Корее, они основаны на газоцентрифужной технологии, нелегально вывезенной с предприятий Urenco.
В США собственной газоцентрифужной технологии до сих пор нет. В 1970-х годах, когда стало известно, что СССР и Urenco используют газоцентрифужную технологию, в Штатах начались масштабные работы по созданию центрифуги. По разным оценкам, они вложили несколько миллиардов долларов, но в 1978 году проект закрыли, не добившись успеха. Недавно они снова реанимировали закрытые тогда исследования, и разработка снова ведется. Сейчас они пытаются сделать очень большую и эффективную центрифугу. В 2013 году в Штатах состоялся запуск пилотного каскада таких машин, в 2012 году произошла авария с разрушением нескольких центрифуг, но НИОКР по этому типу машин все равно продолжаются.
Почему американцы сразу не пошли по этому пути, ведь фундаментальные основы процесса были давно известны? В 1994 году на конференции в Чарльстоне (США) я делал доклад о газоцентрифужной технологии в России. Тогда мне задали примерно тот же вопрос, только с обратной стороны: меня спросили, как же СССР решился на внедрение этой сложной технологии, ведь газодиффузионную воплотить в жизнь намного проще. Я тогда ответил: наверное, мы просто были не такими богатыми, как Соединенные Штаты. Тогда же была гонка вооружений, скорость промышленного воплощения была важнее экономики. В Манхэттенском проекте американцы перепробовали все физические методы разделения изотопов и пришли к выводу, что проще всего осуществима в промышленном масштабе газодиффузионная технология. А потом, потратив колоссальные деньги на отработку этого способа и создав мощнейшие заводы в Падуке и Портсмуте, не решались отказаться от уже наработанных производств — стоимость переключения на альтернативный метод производства была очень высокой. Кстати, когда американцы в конце 1980-х годов впервые приехали на наш завод и вошли в цех, где стояли центрифуги (цех-53 — почти километровый корпус, оснащенный в три-четыре яруса центрифужными каскадами), то стали спрашивать, а работает ли вообще это оборудование. Потому что у нас в корпусе тишина и прохлада, а сотрудники на велосипедах ездят.
После первой неудачи с центрифугой американцы переключились на лазерный метод разделения в атомных парах урана. Он с точки зрения физики на один акт деления должен иметь еще меньше затрат, даже чем при разделении центрифугой. Но теория — одно, а промышленное производство — другое. Дело в том, что для этого акта деления нужно использовать разреженный атомный пар, чтобы U-235 и U-238 по-разному ионизировать лазерным лучом. То есть уран надо испарить, а потом металл перевести в оксид — а это снова большие энергетические затраты. Короче говоря, выяснилось, что для организации технологического процесса снова оказывается куда больше затрат, чем при использовании центрифуг.
Еще в 1991 году на конференции в Вашингтоне оптимистичные доклады представлялись и американцами, и японцами, и англичанами: мол, уже работают опытные установки и лазерный метод вот-вот победит все прежние технологические наработки. А американцы даже показывали почти промышленные модули. Но ресурс работы лазеров такой установки американцы смогли довести только до одного года, а наши центрифуги работают по тридцать лет. К настоящему времени все эти промышленные лазерные проекты по разделению в атомных парах постепенно затихли по всему миру — пока нерентабельно. Например, в 2008 году была создана компания Global Laser Eurichment (является совместным предприятием компаний General Electric, Hitachi и Cameco), которая начала работу по коммерциализации лазерной технологии Silex лицензированной и зарегистрированной в Австралии компании Silex Systems Limited. Это вариант метода молекулярного лазерного разделения изотопов. Компанией в сентябре 2012 года получена лицензия на строительство и эксплуатацию завода установленной мощностью 6 млн ЕРР в год в Уилмингтоне (США). Однако в июле 2014 года было объявлено о приостановлении этого проекта.
Мы не стояли на месте. В Институте молекулярной физики Курчатовского института была лазерная установка, на которой отрабатывались технологические переделы для атомарного и молекулярного разделения. А потом центральная заводская лаборатория и опытный цех УЭХК получили от Четвёртого главного управления задание по молекулярному методу лазерного разделения изотопов. Но наши оценки показали, что эти методы не конкурентоспособны по сравнению с центрифугами. Так что мы свой выбор сделали. И ещё один момент. В центрифуге разделение идёт при давлении ниже атмосферного, это примерно десятки миллиметров ртутного столба, то есть вещество достаточно плотное. А чтобы работать с лазером, надо иметь очень разреженный поток вещества, иначе излучение будет поглощаться на раннем этапе. С этим тоже связаны определённые технологические сложности. Так что, думаю, в ближайшие 20 — 30 лет лазер центрифугам не конкурент.